Connectivity and tree structure in finite graphs

نویسندگان

  • Johannes Carmesin
  • Reinhard Diestel
  • Fabian Hundertmark
  • Maya Jakobine Stein
چکیده

Considering systems of separations in a graph that separate every pair of a given set of vertex sets that are themselves not separated by these separations, we determine conditions under which such a separation system contains a nested subsystem that still separates those sets and is invariant under the automorphisms of the graph. As an application, we show that the k-blocks – the maximal vertex sets that cannot be separated by at most k vertices – of a graph G live in distinct parts of a suitable tree-decomposition of G of adhesion at most k, whose decomposition tree is invariant under the automorphisms of G. This extends recent work of Dunwoody and Krön and, like theirs, generalizes a similar theorem of Tutte for k = 2. Under mild additional assumptions, which are necessary, our decompositions can be combined into one overall tree-decomposition that distinguishes, for all k simultaneously, all the k-blocks of a finite graph.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vertex Cuts

Given a connected graph, in many cases it is possible to construct a structure tree that provides information about the ends of the graph or its connectivity. For example Stallings’ theorem on the structure of groups with more than one end can be proved by analyzing the action of the group on a structure tree and Tutte used a structure tree to investigate finite 2-connected graphs, that are not...

متن کامل

Incidence cuts and connectivity in fuzzy incidence graphs

Fuzzy incidence graphs can be used as models for nondeterministic interconnection networks having extra node-edgerelationships. For example, ramps in a highway system may be modeled as a fuzzy incidence graph so that unexpectedflow between cities and highways can be effectively studied and controlled. Like node and edge connectivity in graphs,node connectivity and arc connectivity in fuzzy inci...

متن کامل

ON THE REFINEMENT OF THE UNIT AND UNITARY CAYLEY GRAPHS OF RINGS

Let $R$ be a ring (not necessarily commutative) with nonzero identity. We define $Gamma(R)$ to be the graph with vertex set $R$ in which two distinct vertices $x$ and $y$ are adjacent if and only if there exist unit elements $u,v$ of $R$ such that $x+uyv$ is a unit of $R$. In this paper, basic properties of $Gamma(R)$ are studied. We investigate connectivity and the girth of $Gamma(R)$, where $...

متن کامل

The second geometric-arithmetic index for trees and unicyclic graphs

Let $G$ be a finite and simple graph with edge set $E(G)$. The second geometric-arithmetic index is defined as $GA_2(G)=sum_{uvin E(G)}frac{2sqrt{n_un_v}}{n_u+n_v}$, where $n_u$ denotes the number of vertices in $G$ lying closer to $u$ than to $v$. In this paper we find a sharp upper bound for $GA_2(T)$, where $T$ is tree, in terms of the order and maximum degree o...

متن کامل

On the Eccentric Connectivity Index of Unicyclic Graphs

In this paper, we obtain the upper and lower bounds on the eccen- tricity connectivity index of unicyclic graphs with perfect matchings. Also we give some lower bounds on the eccentric connectivity index of unicyclic graphs with given matching numbers.

متن کامل

Eccentric Connectivity Index: Extremal Graphs and Values

Eccentric connectivity index has been found to have a low degeneracy and hence a significant potential of predicting biological activity of certain classes of chemical compounds. We present here explicit formulas for eccentric connectivity index of various families of graphs. We also show that the eccentric connectivity index grows at most polynomially with the number of vertices and determine ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Combinatorica

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2014